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ABSTRACT
Abrupt changes in streamflow patterns significantly affect hydrological systems, making their 
detection critical for effective water resource management. This study uses the annual maximum 
streamflow (AMS) data to analyze and identify changes at the Kajang Station in the Langat Basin, 
Selangor, Malaysia. The objective of research is to determine the precise years of abrupt changes 
in streamflow and examine the underlying factors causing them. The problem lies in the increasing 
frequency and intensity of streamflow changes that could be related to factors such as changes in land 
use and climate variation, which require detailed investigation. This study conducts six complementary 
statistical tests to identify change points in the streamflow data. Six complementary statistical 

tests were conducted to identify change points. 
The Pettitt test (statistic: 276, p-value: 0.001), 
Buishand range test (statistic: 1.5881, p-value: 
0.034), and standard normal homogeneity test 
(statistic: 11.349, p-value: 0.009) consistently 
identified 2003 as a significant single change 
point. For multiple change points, the sequential 
Mann-Kendall test indicated shifts in 2002 and 
2007. The multiple structural change method 
and classification and regression trees revealed 
significant change points in 1985, 2003, and 
2009. These changes are likely due to the 1982 
massive flood event and subsequent changes in 
land use and river encroachments. The findings 
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underscore the importance of monitoring and managing river systems, especially given the rapidly 
occurring environmental changes. It is vital to understand these change points to develop more 
resilient strategies for water resource management.

Keywords: Buishand range test, classification and regression tree, multiple structural change, Pettitt test, 
sequential Mann-Kendall, standard normal homogeneity test

INTRODUCTION

Streamflow, the flow of water within a river or other watercourse, is a fundamental 
component of the hydrological cycle, playing a crucial role in shaping landscapes, 
supporting ecosystems, and sustaining human activities (Dingman, 2015; Wang et al., 2023). 
Scientifically, streamflow is characterized by a highly nonlinear distribution and dynamic 
patterns, driven by the complex interplay of climatic, hydrological, and anthropogenic 
factors (Yaseen et al., 2018). However, hydrological systems globally are increasingly 
facing profound alterations, with abrupt changes in streamflow patterns posing significant 
challenges to effective water resource management (Milly et al., 2008; Saad et al., 2020). 
These shifts can impact water availability, flood risk, sediment transport, and overall 
riverine health, necessitating a thorough understanding of their occurrence and drivers.

The study of change points, or abrupt shifts, in streamflow is therefore crucial for 
understanding the dynamics of hydrological systems and the intertwined influence of 
both natural and anthropogenic factors (Yusoff et al., 2022). Such change points can 
indicate significant alterations in climatic, hydrologic, or landscape processes. Detecting 
and characterizing these abrupt changes is critical for developing informed strategies for 
water allocation, infrastructure planning, environmental protection, and for robust water 
resource management and flood risk assessment. Ultimately, this understanding is vital for 
deciphering the complex effects of climate change and human activities on river systems 
(F. M. Hamzah et al., 2021; Kundzewicz & Robson, 2004).

The frequency and intensity of abrupt changes in streamflow patterns appear to be 
increasing globally (Intergovernmental Panel on Climate Change [IPCC], 2023). These 
alterations can be triggered by a complex interplay of factors, including climate variability, 
land use modifications, and anthropogenic interventions within river basins (e.g., dam 
construction, diversions) (F. M. Hamzah et al., 2019; Roy et al., 2022). Understanding 
the specific timing and magnitude of these changes is essential for attributing their causes 
and predicting future hydrological regimes (Avinash & Dwarakish, 2023; Kamarudin 
et al., 2023). The potential for such abrupt changes in the Langat Basin, possibly linked 
to historical events like massive floods and subsequent alterations in land use and river 
encroachments, necessitates a detailed investigation to quantify these shifts and understand 
their temporal characteristics. Without a clear identification of these change points, effective 
water resource management and the development of resilient strategies to cope with 
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evolving hydrological conditions remain severely challenged. In Malaysia, this urgency is 
amplified by rapid urbanization, driven by population growth and economic development, 
which has led to a 30–40% increase in urban land over the past three decades (Hasan 
et al., 2019), intensifying pressures on river systems and potentially amplifying abrupt 
streamflow alterations.

While various statistical methods exist for analyzing trends in hydrological time 
series, identifying the precise timing of abrupt shifts and distinguishing between single and 
multiple change points requires specific, often complementary, and analytical approaches. 
Many studies focus on gradual trends, potentially overlooking the critical impacts associated 
with sudden alterations in streamflow regimes (Danboos et al., 2023). Furthermore, 
attributing these identified change points to specific underlying factors, such as historical 
extreme events and long-term changes in land use (Yusoff et al., 2021), requires a robust 
methodological framework that combines statistical detection with a comprehensive 
contextual understanding of the basin’s history and environmental changes. Therefore, there 
is a pronounced need for studies that not only pinpoint the years of significant streamflow 
changes but also explore the potential linkages to specific historical events and evolving 
basin characteristics.

Recent research has employed a diverse array of methodologies to identify these 
critical change points in streamflow data across various environments. Nonparametric tests, 
such as the Pettitt test, have been widely utilized to detect shifts in the central tendency 
and dispersion of streamflow records, revealing regional and temporal patterns of change 
(Güçlü, 2020; Kanani et al., 2020; Ryberg et al., 2020). To identify multiple change points 
and their spatial distribution, spatial clustering techniques have been applied, highlighting 
the influence of concurrent changes in precipitation and natural climate variability (Ivancic 
& Shaw, 2017). Other statistical methods, including the Buishand range test (de Jesus et 
al., 2020), the standard regular homogeneity test (SNHT) for abrupt and gradual trend 
changes (Pandžić et al., 2020), the sequential Mann-Kendall (SQMK) method for assessing 
multiple change points (Patakamuri et al., 2020), multiple structural change (MSC) methods 
(Baltagi et al., 2020), and classification and regression trees (CART) (Yerlikaya-Özkurt 
& Askan, 2020), further underscore the richness and multidimensionality of change point 
analysis in environmental and climate variables. For example, CART has been used to 
analyze the impacts of anthropogenic, climate, and land-use changes on streamflow, as 
demonstrated in a study in the Talar River basin, Iran, which evaluated the influence of 
land use changes and climate variations on monthly average streamflow (Ruigar et al., 
2023). Their results notably showed that human activities, such as land use changes and 
point source operations, had a significant impact on streamflow. In specific hydrological 
settings, such as alpine catchments, wavelet analysis has proven valuable in distinguishing 
between natural and human-induced breakpoints in streamflow caused by river damming 
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and hydropower operations (Ciria et al., 2019). Furthermore, copula-based methods have 
been employed to analyze changes in the dependence structure of flood flow characteristics, 
providing insights into the non-stationary behavior of streamflow due to human activities 
(Akbari & Reddy, 2020). The diverse approaches and findings from these studies highlight 
the importance of employing robust methodologies to accurately detect and interpret 
abrupt changes in streamflow, paving the way for a more comprehensive understanding 
of hydrological system dynamics. Understanding the underlying factors causing abrupt 
changes in streamflow is vital for developing socio-hydrological models and predicting 
future streamflow scenarios. Studies have shown that human activities, such as reservoir 
operations and water management policies, significantly impact streamflow patterns, 
often leading to the disappearance of minor periodicities in runoff records (Lan et al., 
2020). These findings underscore the importance of integrating change point detection 
with an analysis of human and natural influences to better manage and adapt to changing 
hydrological conditions.

This study aims to identify and characterize abrupt changes in the AMS data at the Kajang 
Station in the Langat Basin, Selangor, Malaysia. Specifically, it conducted exploratory data 
analysis to pinpoint any shifts in the recorded data and employed robust methods to determine 
the break or change points within the time series. To achieve these objectives, the study 
utilized a multifaceted approach, applying the Pettitt test, Buishand range test, SNHT, SQMK 
analysis, MSC method, and CART method. This comprehensive suite of techniques ensured 
a thorough investigation into the structural changes or variations present in the streamflow 
data for the Kajang Station. The diverse methods employed in this study underscore their 
commitment to conducting a thorough examination of hydrological dynamics at this critical 
location in the Langat Basin. By achieving these objectives, this research seeks to provide 
valuable insights into the dynamics of streamflow regimes in the study area, contributing to 
a better understanding of hydrological change and informing more effective water resource 
management strategies in the face of ongoing environmental pressures.

MATERIALS AND METHODS

Study Area

The study was conducted at the Kajang Station (station number 2917401), strategically 
located within the Langat River Basin in Selangor, Malaysia, as depicted in Figure 1. 
Situated at a latitude of 02°59′40″ N and a longitude of 101°47′10″ E, this gauging station 
monitors a significant catchment area of approximately 389.4 km².

The Langat River Basin itself is one of Malaysia’s most critical hydrological systems, 
spanning approximately 1,815 km² between 101°17′E and 101°55′E longitude and 2°40′N 
and 3°17′N latitude. It originates from the Titiwangsa Range in the northeast of the Hulu 
Langat District. It ultimately drains into the Straits of Malacca, supplying water to about 
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Figure 1. Map of Kajang Station obtained from the Geographic Information System

two-thirds of Selangor’s population. Along its course, the Langat River is monitored by 
four key gauging stations: Lui, Kajang, Semenyih, and Dengkil stations (F. B. Hamzah et 
al., 2022; Yusoff et al., 2022).

The Kajang Station is situated explicitly within the city of Kajang, a major urban center 
in eastern Selangor. Located just 21 km from Malaysia’s capital, Kuala Lumpur, Kajang 
encompasses an area of 60 km² and had a population of approximately 300,000 in 2010. 
It shares its borders with the Cheras, Ulu Semenyih, Semenyih, and Kajang subdistricts. 
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This area is characterized by high urbanization and dense population. Land use in Kajang is 
predominantly residential (30.31%), followed by transportation (23.64%), industry (8.13%), 
public amenities (7.55%), commercial activities (3.03%), and other purposes (1.69%). The 
extensive urban development in Kajang has notably resulted in the city having a low water 
retention capacity (Jabatan Perancangan Bandar dan Desa Semenanjung Malaysia [JPBD], 
2016), making it particularly susceptible to hydrological changes.

For this research, daily streamflow (m3/s) data for the Kajang station were analyzed. 
The streamflow data, spanning the period from 1978 to 2016, were sourced from the 
Department of Irrigation and Drainage (DID) (Jabatan Pengairan dan Saliran), Malaysia’s 
primary governmental agency responsible for hydrological monitoring. These data, 
accessed directly from DID, have been subjected to their standard quality control protocols 
to ensure accuracy and reliability for hydrological analysis.

Single Change Point Detection

Assessment of the change points concerns detecting anomalies in the AMS data. The 
initial focus is three location-specific tests, the Pettitt test, the Buishand range test, and the 

Figure 2. Flowchart for the single change point 
detection
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SNHT, specifically designed to determine 
the year a significant break or change is 
likely to occur in the dataset. The detailed 
process of change point detection shown in 
Figure 2 provides a clear and comprehensive 
overview of the methodology employed to 
identify and analyze the potential shifts in 
the streamflow data.

Pettitt Test

The Pettitt test is a nonparametric tool 
for examining the homogeneity of a time 
series and identifying the shifts within the 
time series. It is specifically formulated 
to identify breaks in a time series and 
can efficiently identify the exact year a 
significant shift occurs. Traditionally used 
to identify breaks in the middle of a series, 
the Pettitt test is fundamentally rooted in 
the rank-based Mann-Whitney two-sample 
test. It operates on the principle of detecting 
a shift at an unknown point within a time 
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series, making it a valuable analytical technique for uncovering temporal shifts or structural 
changes in the investigated dataset (Pettitt, 1979).

The null hypothesis states there is no change in the distribution of a random variable’s 
sequence. The alternative hypothesis states that the distribution function F1(x) of the 
random variables, from X1 to Xt,, differs from the F2(x) distribution function of the random 
variables from Xt+1 to XT. Given Equation 1: 

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗 � = �
−1   , �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗 � < 0
0      , �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗 � = 0

+1     , �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗 � > 0
 		  [1]

where Xi and Xj are random variables, with Xi following Xj in time. It represents the observed 
values at two different time points, i and j, in the time series. Dij is a sign function that 
quantifies the relationship between pairs of observed Xi and Xj. The test statistic Ut,T is 
dependent on Dij (Equation 2). 

two different time points, i and j, in the time series.  𝐷𝐷𝑖𝑖𝑖𝑖  is a sign function that quantifies the 

relationship between pairs of observed 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑗𝑗 . The test statistic 𝑈𝑈𝑡𝑡 ,𝑇𝑇  is dependent on 𝐷𝐷𝑖𝑖𝑖𝑖 . 

 

𝑈𝑈𝑡𝑡 ,𝑇𝑇 = ∑ ∑ 𝐷𝐷𝑖𝑖𝑖𝑖𝑇𝑇
𝑗𝑗=𝑡𝑡+1

𝑡𝑡
𝑖𝑖=1         [2] 

 

Statistic 𝑈𝑈𝑡𝑡 ,𝑇𝑇 is used to  

					     [2]

Statistic Ut,T is used to analyze samples X1, ... , Xt and Xt+1, ... , XT from the same 
population. Ui,T is used to assess all random variables from 1 to T and select the critical 
change point where the |Ui,T| value is large (Equation 3).

large. 

 

𝐾𝐾𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑡𝑡<𝑇𝑇|𝑈𝑈𝑡𝑡 ,𝑇𝑇|         [3] 

 

A change point occurs at time  

					     [3]

A change point occurs at time t when KT differs significantly from zero at a particular 
level given by Equation 4: 

𝑃𝑃 = 2𝑒𝑒𝑒𝑒𝑒𝑒 � −6𝐾𝐾𝑇𝑇
2

𝑇𝑇2+𝑇𝑇3�         [4] 

 

The null hypothesis is  

						      [4]

The null hypothesis is rejected if the p-value is less than the significance level. α, 
thus allowing the data to be split into two series, each with different distribution functions 
(Mallakpour & Villarini, 2016).

Buishand Range Test

The Buishand range test is a parametric test that assumes the data values of the test variables 
are independent and normally and identically distributed (null hypothesis). The research 
hypothesis suggests the presence of a shift (break). This Buishand range test is suitable 
for variables with any distribution. It is sensitive to changes in the middle of a time series 
(AL-Lami et al., 2014; Wijngaard et al., 2003).
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𝑠𝑠0
∗ = 0 

𝑠𝑠𝑘𝑘∗ = ∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)𝑘𝑘
𝑖𝑖=1 , 𝑘𝑘 = 1.2 … . ,𝑁𝑁  

𝑠𝑠0
∗ = 0 

𝑠𝑠𝑘𝑘∗ = ∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)𝑘𝑘
𝑖𝑖=1 , 𝑘𝑘 = 1.2 … . ,𝑁𝑁  				   [5]

where 𝑋𝑋�  is the mean of the time series observation; 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛   and k is the number of 
observations at which a breakpoint occurred.

The rescaled adjusted partial sums are obtained by dividing the 𝑠𝑠𝑘𝑘∗   with the sample 
standard deviation (Buishand, 1982). 

𝐷𝐷𝑋𝑋 = �∑ (𝑥𝑥𝑖𝑖−𝑥𝑥̅)2

𝑁𝑁
𝑁𝑁
𝑖𝑖=1          [6] 

𝑠𝑠𝑘𝑘∗∗ =
𝑠𝑠𝑘𝑘∗

𝐷𝐷𝑋𝑋
, 𝑘𝑘 = 1,2, … ,𝑁𝑁 

					     [6]

 

𝐷𝐷𝑋𝑋 = �∑ (𝑥𝑥𝑖𝑖−𝑥𝑥̅)2

𝑁𝑁
𝑁𝑁
𝑖𝑖=1          [6] 

𝑠𝑠𝑘𝑘∗∗ =
𝑠𝑠𝑘𝑘∗

𝐷𝐷𝑋𝑋
, 𝑘𝑘 = 1,2, … ,𝑁𝑁 				    [7]

Equation 8 is the statistics for analyzing homogeneity. 

𝑄𝑄 = max
0≤𝑘𝑘≤𝑁𝑁

|𝑠𝑠𝑘𝑘∗∗|  						      [8]

The value of of 𝑄𝑄/√𝑁𝑁 is  is compared with the critical value recommended by Buishand 
(1982). The null hypothesis is rejected if a calculated value is larger than the critical value 
(Arikan & Kahya, 2019).

Standard Normal Homogeneity Test (SNHT)

Alexandersson (1986) as well as Ahmad and Deni (2013) recommended using T(d) to 
assess the mean (Stone, 2014) of the initial d years of the record relative to the mean of 
the remaining (n − d) years (Equation 9). 

(Stone, 2014) of the initial d years of the record relative to the mean of the remaining (n − d) years.  
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where,   𝑧𝑧1̅
2 = 1

𝑑𝑑
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2 =

1
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𝑛𝑛
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/𝑠𝑠 

 

are the mean values of z during the first d years and the last (n - d) years, respectively. Equation 

10 gives the test statistics 𝑇𝑇0. 
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The probability of rejecting a null hypothesis when T0 is greater than a particular critical 
value depends on the sample size. Therefore, the series is considered inhomogeneous at a 
given level of significance, such as 95%.
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Table 1 presents a comparative analysis of several key characteristics of the Pettitt test, 
Buishan range test, and SNHT. The Pettitt and Buishand range tests effectively identify 
the breaks in the middle of the series. In contrast, SNHT identifies the breaks close to the 
beginning and at the end of the series. The Pettitt test does not require the series to have a 
normal distribution, but the Buishand range test and SNHT do. Also, unlike the Buishand 
range test and SNHT, the Pettitt test is less sensitive to outliers.

Table 1 
Comparison of the Pettitt test, Buishand range test, and standard normal homogeneity test (SNHT)

Characteristics Pettitt test Buishand range test SNHT
Break In the middle In the middle Near the beginning and at the 

end of a series
Normality No normality 

assumption
Assumes a normally 
distributed series

Assumes a normally distributed 
series

Outlier Less sensitive to outliers Sensitive to outliers Sensitive to outliers

Multiple Change Points Detection

This study used specially designed tests, the SQMK, MSC, and CART, to identify the 
breaks occurring in more than one location in the dataset. These tests efficiently detect 
shifts across multiple locations. The flowchart in Figure 3 presents the methodology used 
to identify and analyze the breaks at varying locations.

Figure 3. The flowchart for detecting multiple change points
Note. SQMK = Sequential Mann-Kendall; MSC = Multiple structural change; CART = Classification and 
regression trees; BIC = Bayesian information criterion

Start

Annual maximum streamflow

MSCSQMK CART
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detected?
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EndChange point 
detected

Yes
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Sequential Mann-Kendall Test

Sneyers (1990) introduced the SQMK test, a non-parametric method for identifying a 
change point or the likely start years for notable trends. The test comprises the forward 
series u(t) and the backward series u’(t). A trend is statistically significant when the series 
intersects, separates, and exceeds specific threshold values (± 1.96 for a 95% confidence 
level). u(t) is a standardized variable with a mean of zero and a standard deviation of 
one, fluctuating around zero. u(t) is the value of the first data point to the last data point. 
Generally, the SQMK test examines the relative values of the terms in a time series 
(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛).  

(𝑗𝑗 = 1, … ,𝑛𝑛) 

. The test statistics are calculated as follows:
(i)	 xj is the annual mean series 

(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛).  

(𝑗𝑗 = 1, … ,𝑛𝑛)  evaluated about xu, (k = 1, ... , j−1) and 
the number of cases where 𝑥𝑥𝑗𝑗 > 𝑥𝑥𝑘𝑘    is counted for each comparison and is designed 
by nj.

(ii)	 The calculation of the test statistics uses the following equation.

	 𝑡𝑡𝑗𝑗 = ∑ 𝑛𝑛𝑗𝑗
𝑗𝑗
1   

𝑒𝑒(𝑡𝑡) = 𝑛𝑛(𝑛𝑛−1)
4

        [12] 

𝑣𝑣𝑣𝑣𝑣𝑣�𝑡𝑡𝑗𝑗 � = 𝑗𝑗 (𝑗𝑗−1)(2𝑗𝑗+5)
72

       [13] 

i) Equation 14 gives the sequential values of u(t). 

𝑢𝑢(𝑡𝑡) = 𝑡𝑡𝑗𝑗−𝑒𝑒(𝑡𝑡)

�𝑣𝑣𝑣𝑣𝑣𝑣 (𝑡𝑡𝑗𝑗 )
        [14] 

						      [11]

	 Equations 12 and 13 give the mean and variance.
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(iii)	Equation 14 gives the sequential values of u(t).
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i) Equation 14 gives the sequential values of u(t). 

𝑢𝑢(𝑡𝑡) = 𝑡𝑡𝑗𝑗−𝑒𝑒(𝑡𝑡)
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The values of u’(t) are computed in reverse from the end of the series using a similar 
approach to u(t). The sequential version of the MK test is an effective tool for detecting the 
beginning of a trend. The intersection point of the forward and backwards curves indicates 
the beginning of a trend or change (Zarenistanak, 2019).

Multiple Structural Change Method

Bai (1994) formulated the fundamentals for predicting breaks in time series regression 
models. Bai and Perron (2003) expanded the equation to account for multiple breaks. 
They developed an algorithm that allows simultaneous estimation of multiple breakpoints. 

Many applications assume the presence of m breakpoints at which the coefficients 
transition from one stable regression relationship to another. The model consists of m + 1 
segments. Each segment has constant regression coefficients written as follows:
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𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽𝑗𝑗 + 𝜇𝜇𝑖𝑖    �
𝑖𝑖 = 𝑖𝑖𝑗𝑗−1 + 1, … , 𝑖𝑖𝑗𝑗  
𝑗𝑗 = 1, … ,𝑚𝑚 + 1   

			   [15]

where, j is the segment index. It is essential to estimate the breakpoints ij since they are 
rarely provided externally. The breakpoints estimation is obtained by minimizing the 
residual sum of squares (RSS) or Bayesian information criterion (BIC) for the above 
equation (Zeileis et al., 2010).

Classification and Regression Trees

Breiman et al. (1984) developed CART, a recursive algorithm for data mining. It is a 
non-parametric method that employs input data to develop predictive models. It utilizes 
historical data to create decision trees. CART builds classification trees when the dependent 
variable is categorical and a regression tree when the dependent variable is continuous 
(Choubin et al., 2018). Classification trees classify new observations and organize the 
dependent variables into the classes specified by the user or calculated using eternal rules. 
Regression trees aim to predict outcomes. Since they do not have any predefined class, 
the dependent variables are the response values for the observations within the matrix of 
independent variables. 

This study implemented CART in a structured three-step process. The first step is 
constructing the maximum tree, which is the most time-intensive phase. The algorithm in 
regression trees splits and builds the maximum tree by minimizing the squared residuals. 
Pruning techniques, such as cross-validation and optimization based on the number of points 
in each node, were used to remove insignificant nodes since the maximum tree, especially 
the regression tree, can be relatively large. The second step was selecting an optimal tree size 
using two pruning methods, cross-validation and node point optimization, to determine the 
appropriate size. In the latter, the splitting process stopped when the number of observations 
dropped below a predefined minimum. Cross-validation, on the other hand, searched for 
an optimal balance between misclassification error and tree complexity. The ideal tree size 
was determined using the complexity parameter (cp), where the trial-and-error method was 
employed to determine the optimal cp. Finally, the constructed regression tree predicted the 
breakpoints for new data to give the response values for each new observation (Choubin 
et al., 2019; Zhang et al., 2018).

The CART algorithm generates trees with the fewest nodes and cost complexity 
values to balance simplicity and accuracy. Some of the benefits of this approach are fast 
computation, easy-to-understand model representation, resistance to irrelevant variables, 
seamless adaptation to categorical outcomes, single-tuning parameters, and the ability 
to handle high correlations among variables. However, it is worth noting that CART can 
sometimes introduce false change points, thus raising false alarms, as observed in a study 
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by Gey and Lebarbier (2008). A notable drawback of the CART method is the potential for 
error propagation during model construction (Yerlikaya-Özkurt & Askan, 2020). Table 2 
compares the advantages and features of the CART, SQMK, and MSC methods.

RESULTS

The Langat Basin has undergone massive changes due to rapid urbanization, 
industrialization, and intensive agricultural activities. Langat River, an important river in 
Selangor, is in a fast-transforming area and provides water to 16 intake points in the Langat 
Basin. The water sources fulfil the diverse water requirements in the region, including 
industrial, domestic, agricultural, and commercial needs (Abidin et al., 2018). The complex 
relationship between the river system and the varied demands of a growing urban and 
industrial area highlights the vital importance of understanding the hydrological dynamics 
in the Langat Basin in formulating effective management and conservation strategies to 
preserve the water resources critical for the various sectors in the region.

This study conducted a change point analysis on the AMS data from the Kajang Station 
in the Langat River Basin. The results of the analysis, as shown in Table 3, indicate that the 
change point occurred in 2003. Since all methods yielded p-values below the significance 
level of 0.05, the presence of a structural break is considered plausible. The tests suggest 
that the shift occurred in a single year. However, it would be ideal to investigate whether 
the change point may have occurred earlier or developed gradually over several years.

The second group of tests, SQMK, MSC, and CART, lasted more than one year. 
The first method involved multi-change point analysis and used the AMS data for the 

Langat River Station in Kajang in the SQMK test. The u(t) sequence represents the forward 
series, where the AMS data is from the beginning of the series. The u’(t) sequence is the 
backwards series, where the AMS data is in reverse and begins at the end of the series.

Plotting the u(t) and u’(t) sequences on the same axis gives an intersection point (Figure 
4). In the SQMK method, the intersection of u(t) and u’(t) showed that the change points 
occurred in 2002 and 2007.

Table 2 
The advantages of the SQMK, MSC, and CART methods

SQMK MSC CART
Detect multiple changes in 
a time series.

Detect multiple changes in a time 
series.

Detect multiple changes in a time series.

Non-parametric test. Use a piecewise linear model. Fast computations and interpretable 
model representation

Detect the starting point of 
trends.

Often applied to data with noise 
distributions with heavy tails.

Resistant to irrelevant variables and can 
handle correlation among variables

Note. SQMK = Sequential Mann-Kendall; MSC = Multiple structural change; CART = Classification and 
regression trees
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The second method in multichange point analysis uses the MCS methods. The MSC 
carried out the change point process for the six different breakpoints listed in Table 4 and 
selected 1985, 2003, and 2009 more frequently than the other years (1982, 1992, and 1997). 
A comparison of the BIC estimates for different numbers of breakpoints helps determine the 
optimal number of breakpoints. The BIC selected the lowest value as the optimal number. 
Table 5 shows the minimum BIC value of 438.8 and two breakpoints. Therefore, the MSC 
method gives 2003 and 2009 as the years of shift.

The third method, CART, determined that the change points occurred in 1985, 2003, 
and 2009. Figure 5 shows that the most significant change point was in 2003, and the 
daily maximum streamflow series comprises two segments. The left tree node is the 
streamflow series before 2003, and the right tree node is the series after 2003. The left 
and right nodes represent the second significant change points in 1985 and 2009. The 
average streamflow values calculated using the change point positions are 67.44, 39.99, 
170.80, and 87.58. The primary reason for utilizing the CART method is to detect the 
change points over time.

Table 3 
Results for the change point for the annual maximum streamflow series from 1978 to 2016

Method Statistic p-value Shift Year of shift
Pettitt test 276 0.001 Yes 2003
Buishand range test 1.5881 0.034 Yes 2003
SNHT 11.349 0.009 Yes 2003

Note. SNHT = Standard normal homogeneity test

Figure 4. Sequential Mann–Kendall analysis for the Kajang Station

Z-
va

lu
e

3

2

1

0

-1

-2

-3

2002

2007

 1980                            1990                            2000                            2010
Year



2330 Pertanika J. Sci. & Technol. 33 (5): 2317 - 2337 (2025)

Siti Hawa Mohd Yusoff, Firdaus Mohamad Hamzah, Othman Jaafar, Norshahida Shaadan, Lilis Sulistyorini and R. Azizah

DISCUSSION

The convergence of results from the single 
change point detection methods (Pettitt, 
Buishand range, and SNHT) strongly 
points to 2003 as a significant year of 
abrupt change in streamflow characteristics 
at the Kajang Station. While the SQMK 
test identified 2002 and 2007 as additional 
change points, and the MSC method, 
along with CART, further reinforced the 
significance of 2003 and 2009, these years 
collectively indicate a period of pronounced 
hydrological instability. Notably, CART 

Figure 5. The classification and regression trees

Table 4 
Number of breakpoints and the respective years

Number of breakpoint Year
1 2003
2 2003 2009
3 1985 2003 2009
4 1985 1997 2003 2009
5 1985 1992 1997 2003 2009
6 1982 1987 1992 1997 2003 2009

Table 5 
The Bayesian information criterion (BIC) for selecting the optimal number of breakpoints

Number of breakpoints 0 1 2 3 4 5 6
BIC 445.9 439.3 438.8 444.5 451.6 458.7 466.3

Year < 1985.5

67.44 39.99

170.80 87.58

Year < 2009.5

Year < 2003.5

additionally identified 1985 as a change point. This early identification by CART, coupled 
with an indication from the analysis that the trend might have begun as early as 1982, 
aligns critically with the historical flood record for the Langat Basin. Specifically, the 
flood record details a massive flood event in September 1982, with a stage reading of 
26.44 m, almost reaching the dangerous level of 26.50 m. This suggests that the initial 
abrupt change in streamflow patterns likely commenced around this period, potentially as 
a direct consequence of or in response to such extreme events. Following this initial shift, 
the subsequent change points in the early and late 2000s can be linked to the rapid and 
extensive anthropogenic developments in Kajang. The National Physical Plan (JPBD, 2016) 
explicitly recognizes Kajang town as an area with a high probability of being inundated. The 
proliferation of business premises and rapid urbanization in Kajang town have demonstrably 
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contributed to frequent flash floods, often submerging areas like the Kajang market up to 
one meter and disrupting daily activities (Wan Mohd Rani et al., 2018). The Kajang city 
center is identified as the area with the highest risk for flash floods, which typically occur 
within 30 minutes to two hours of excessive rainfall. Thus, the sequence of detected change 
points, starting with the immediate aftermath of the 1982 flood and continuing through 
periods of significant urban expansion, provides a compelling narrative for the drivers of 
streamflow alteration in the Langat Basin.

Langat River flows through various land uses, including commercial, residential, 
agricultural, and industrial. According to the land use information obtained by Abidin et 
al. (2018), 183 km2 (47%) of the land along the one-kilometer buffer of the Langat River 
is dominated by commercial crops, primarily rubber and palm oil plantations, in the 
downstream of the Langat Basin. Seventeen per cent (66 km2) of the land is dominated 
by commercial, municipal, residential, and other physical development. There is mixed 
farming, comprising orchards planted with coconuts, bananas, and other fruit trees, for 
local consumption and market. Ten percent of the land along the Langat River is allocated 
for this purpose. Most mixed plantations are along the upper and middle streams of the 
Langat River. Quarrying and mining activities are carried out in an area of 4.35 km2 
along the Langat River, and about 0.6% is for recreational purposes, especially along the 
upstream of the Langat River. The rapidly changing land use, especially deforestation for 
agricultural expansion or urbanization, modifies the hydrological areas and exacerbates 
flood occurrences (Abdullahi et al., 2018). Flash floods in urban areas are indicative of 
unplanned development, and this is true in Malaysia, where rapid urbanization in the 
low-lying areas of major cities such as Kuala Lumpur, George Town, and Kota Bharu has 
worsened flood occurrences (Chan et al., 2019). 

The impervious surfaces gradually replacing the green spaces increase the runoff 
entering the river within a short period. Sand and mud deposits in most rivers have also 
reduced their drainage capacity. Besides local geomorphological framework conditions, 
entry products from the upstream area also influence the channel geometry and fluvial 
dynamics. In the long term, the transport and disposal of sediment from one side to the other 
result in the formation of specific channel patterns. Any change in the upstream sediment 
delivery and discharge regimes will alter local channel adaptations (Hohensinner et al., 
2008). Jaafar (2009) reported that one of the factors related to water supply disruptions is 
the reduced water resources that resulted from a change in the land use in the catchment 
areas, most notably deforestation for agriculture expansion and urbanization. 

Active sand dredging in the Langat River directly impacts river morphology (Abidin 
et al., 2018). Sand mining activities have been identified as the primary contributors 
to total suspended solids, sedimentation, and turbidity. The influx of high volumes of 
suspended solids into the river system exacerbates the river conditions during heavy rainfall. 
Uncontrolled sand mining can pollute the downstream of rivers and damage their aquatic 
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flora and fauna. Additionally, river encroachment when developing urban areas close to 
the river banks narrows the river channels, damages the river reserves, and destroys the 
buffer zone (Chan et al., 2020). Aling (2020) reported that the encroachment activities on 
the banks of the Langat River were one of the causes of the worst flash floods in Kajang 
after the 2016 flood, and affected 141 families. 

From a water resources management and flood prevention perspective, these results 
provide critical insights into the timing and likely causes of hydrological regime shifts. 
Identifying specific years linked to major changes in streamflow patterns enables water 
managers and policymakers to correlate these shifts with land development policies and 
practices. This can support more effective planning and implementation of mitigation 
strategies, such as improved land-use zoning, sustainable riverbank management, stricter 
regulation of sand mining, and the integration of green infrastructure to restore natural 
infiltration and reduce runoff. Moreover, understanding abrupt changes in peak flows can 
enhance the design of early warning systems, improve flood forecasting accuracy, and 
inform the development of resilient flood control infrastructure. Ultimately, this research 
underscores the importance of integrating hydrological data analysis with land-use planning 
to ensure sustainable and adaptive water resource management in the face of urbanization 
and climate variability.

LIMITATIONS AND FUTURE WORK

While this study provides robust evidence for significant abrupt changes in streamflow 
patterns, certain limitations should be acknowledged. The analysis relied on AMS data for 
a specific period (1978-2016) at a single station (Kajang Station). Future research should 
extend the time series of streamflow data to capture more recent changes and long-term 
trends. Incorporating more detailed spatial data on land use and land cover changes over 
time will allow for a more granular correlation with hydrological responses. Investigating 
the impact of specific climate variability indices such as El Niño–Southern Oscillation 
(ENSO) or the Indian Ocean Dipole could provide additional insight into streamflow 
dynamics. Coupled hydrological-land use models should be developed to simulate the 
impacts of various development scenarios. Moreover, studies should explore the socio-
economic impacts of these streamflow changes on local communities and aim to create 
integrated socio-hydrologic models that consider both natural and human systems. Applying 
these robust methodologies to other river basins in Malaysia could help generate broader 
regional insights and support national water management planning.

CONCLUSION

The application of a suite of complementary statistical tests has provided robust evidence for 
significant abrupt changes in the AMS patterns within the study area. Specifically, the Pettitt 
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test, Buishand range test, and SNHT consistently identified 2003 as a key year marking 
a shift in streamflow characteristics at the analyzed location. Further, the application of 
methods designed to detect multiple change points, the SQMK test, the MSC method, and 
CART revealed 2003 and 2009 as significant years of change. The convergence of results 
across these diverse methodologies underscores the robustness of these identified change 
points. Notably, the suitability of all employed methods in detecting abrupt shifts within 
the time series highlights the value of a multi-pronged statistical approach in hydrological 
change point analysis.

The findings strongly suggest that anthropogenic activities in the vicinity of the Langat 
River have played a substantial role in altering streamflow behavior and river morphology. 
The identified change points in 2003 and 2009 appear to coincide with or follow a 
period of intensified land use activities, including commercial, residential, agricultural, 
industrial, and sand mining operations. Furthermore, land encroachment on the riverbanks 
likely contributed to changes in the river’s hydraulic characteristics and its response to 
precipitation events. These activities can lead to increased impervious surfaces, altered 
infiltration rates, changes in vegetation cover, and modifications to the river channel itself, 
all of which can significantly impact the magnitude and timing of peak flows.
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